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New risk measures

I Until now, we have considered risk measures that penalize the
deviation (semideviation) from the mean

I In real life portfolio managers are interested to the losses

I ”What is the risk that I lose money? How much can I lose?
What is the chance that I lose even more?”

I These are typical questions that almost every investor who has
invested or is considering investing in a risky asset asks at
some point in time

I These considerations are led to the definition of new measures
to control the risk of losses
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The Value at Risk

I The Value at Risk (VaR) is a measure of the potential risk
that a portfolio of financial assets can suffer.

I In particular, the VaR measures the maximum potential loss
that a risky asset or portfolio may incur over a defined period
of time with a given confidence level.

I If the VaR on an asset is $ 100 at one-week, with a 95%
confidence level, there is a only a 5% chance that the value of
the asset will drop more than $ 100 over any given week.

I In mathematical terms, indicating with L̃ the random loss, and
by α a given confidence level, the VaR is defined as:

P(L̃ ≤ VaR) = α
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How the Value at Risk can be computed ?

I The VaR is the α- quantile of the distribution function of the
random loss.

I For the moment, we shall assume to consider a predefined
portfolio and we shall compute the loss as deviation of the
portfolio value from a given target K

L̃ = max(0,K − W̃ )

where W̃ represents the random wealth

I If we consider continuous distributions, the VaR can be
computed in some special cases – for example, for normal
distributions –

I Typically, discrete random variables are considered eventually
as approximation of the continuous ones

I In this case, the VaR can be easily determined
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Computation in the case of discrete distributions?

I We assume to consider S scenarios of prices and to have a
predefined portfolio

I Under each scenario s, we compute the wealth W s and the
loss

Ls = max(0,K −W s)

where K represents a given target

I We determine the distribution function of the losses

I The VaR is the α- quantile of the distribution, that is the
value of the losses such that

F (VaR) = α
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The Value at Risk: example

Assuming equiprobable scenarios, compute the VaR at 80%

Scenarios Portfolio A 

1 562,29 

2 264,89 

3 328,37 

4 731,47 

5 765,95 

6 803,76 

7 369,36 

8 402,79 

9 432,44 

10 459,93 

11 486,17 

12 511,71 

13 536,98 

14 587,93 

15 614,18 

16 641,32 

17 669,66 

18 699,56 

19 846,00 

20 894,25 

21 1252,53 

22 1552,69 

23 951,11 

24 1021,11 

25 1113,53 

Antonio VIOLI DATA SCIENCE 2018/2019



The Value at Risk: determine the density function

Scenarios Portfolio A 

1 264,89 

2 328,37 

3 369,36 

4 402,79 

5 432,44 

6 459,93 

7 486,17 

8 511,71 

9 536,98 

10 562,29 

11 587,93 

12 614,18 

13 641,32 

14 669,66 

15 699,56 

16 731,47 

17 765,95 

18 803,76 

19 846,00 

20 894,25 

21 951,11 

22 1021,11 

23 1113,53 

24 1252,53 

25 1552,69 
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The Value at Risk: determine the density function
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The Value at Risk: determine the distribution function
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The Value at Risk: remarks

I The VaR was introduced by the investments bank J.P.
Morgan in the early 1990s

I It is used often by the banks to capture the potential loss in
value of their traded portfolios from adverse market
movements over a specified period; this can then be compared
to their available capital and cash reserves to ensure that the
losses can be covered without putting the firms at risk.

I Since its introduction, the VaR quickly became a widely used
measure of risk, because:

I It summarizes in a single number an important aspect of risk
I It is easy to understand and is expressed in the best of possible

units of measures: LOST MONEY
I It asks the simple question: How bad can things get?
I It provides a loss and a probability of occurrence
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The Value at Risk: another example

Scenarios Portfolio A Portfolio B 

1 264,89 264,89 

2 328,37 328,37 

3 369,36 369,36 

4 402,79 402,79 

5 432,44 432,44 

6 459,93 459,93 

7 486,17 486,17 

8 511,71 511,71 

9 536,98 536,98 

10 562,29 562,29 

11 587,93 587,93 

12 614,18 614,18 

13 641,32 641,32 

14 669,66 669,66 

15 699,56 699,56 

16 731,47 731,47 

17 765,95 765,95 

18 803,76 803,76 

19 846,00 846,00 

20 894,25 894,25 

21 951,11 1034,81 

22 1021,11 1218,56 

23 1113,53 1351,90 

24 1252,53 1960,10 

25 1552,69 2018,11 
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The Value at Risk: compare the VaR of Portfolio A and B
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The Value at Risk
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The Value at Risk: drawbacks

I The VaR does not care about the losses exceeding the VaR

I Even though the probability of occurrence is limited, the
amount of such losses can be very high

I For this reason a new risk measure, named CVaR, has been
proposed

I It is defined as the expected value of the losses exceeding the
VaR

CVaR = E [L̃|L̃ ≥ VaR]
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Condition Value at Risk: calculation

I As before, we assume that the random prices are discretely
distributed

I For each scenario we determine W s and Ls

I We compute the VaR

I We determine the deviation from the VaR

y s = max(0, Ls − VaR)

I We compute the CVaR as

CVaR = VaR +
1

(1− α)

S∑
s=1

psy
s

I Remark: pay attention to the normalization
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Condition Value at Risk: example

I Compute the CVaR of the portfolio A and B

I Even though the two portfolio have the same VaR equal to
894, 25, the CVaR are different

CVaR(A) = 1178, 194

CVaR(B) = 1516, 696
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Coherent Risk Measures

I Remark: A risk measure should attribute greater values to
more risk investments

I In 1999 Artzner et. al. published a paper where they defined
the properties that a good risk measure (termed coherent )
should have

I They proved that the standard deviation is not a coherent
measure
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Axioms of Coherent Risk Measures

Let us denote by X and Y two random variables representative of
the loss of two assets (portfolio)
A risk measure ρ(x) is said to be coherent if it satisfies the
following axioms

1 Subadditivity

ρ(X + Y ) ≤ ρ(X ) + ρ(Y )

The subadditivity axiom captures the meaning of
diversification. The risk measure for two portfolios after they
have been merged should be no greater than the sum of their
risk measures before they were merged.

2 Positive homogeneity

ρ(λX ) = λρ(X )

If we change the size of the investment by a factor λ, then the
risk measure should be multiplied byλ.
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Axioms of Coherent Risk Measures

3 Translation Invariance

ρ(X + a) = ρ(x) + a

If we increase a loss of given amount, its risk measure should
go up by a.

4 Monotonicity If X ≤ Y for every state of the world then

ρ(X ) ≤ ρ(Y )

If a portfolio has lower losses than another portfolio for every
state of the world, its risk measure should be lower.
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Example

We prove that the standard deviation is not a coherent risk
measure.
Let us consider the losses associated with two assets X and Y.
Assuming that the scenarios are those reported below, verify if the
monotonicity axiom is satisfied.

X P(X=x) Y P(Y=y)

1 0,95 2 0,95
2 0,04 2 0,04
2 0,01 2 0,01

E [X ] = 1, 05 E [Y ] = 2

σ2X = 0, 04 σ2Y = 0

σX = 0, 21 σY = 0

X ≤ Y but ρ(X ) ≥ ρ(Y )
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Exercise

We consider the losses associated with two assets and we assume
to know the mass distribution function. Compute the VaR at 0,95
% and prove that it is not a coherent risk measure, since it does
not satisfy the subadditivity axiom.

X P(X=x)

0 0,93
1 0,02
2 0,05

Y P(Y=y)

0 0,94
0,5 0,01
2,5 0,05
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Exercise

Determine the joint probability mass function assuming that X and
Y are independent

p(x , y) = P(X = x andY = y) = P(X = x) ∗ P(Y = y)

X/Y 0 0,5 2,5

0 0,8742 0,0093 0,0465
1 0,0188 0,0002 0,001
2 0,047 0,0005 0,0025

Antonio VIOLI DATA SCIENCE 2018/2019



Exercise

Determine the joint distribution function F (z) = P(X + Y ≤ z)

X+Y 0 0,5 2,5

0 0 0,5 2,5
1 1 1,5 3,5
2 2 2,5 4,5

X+Y F(X+Y)

0 0,874
0,5 0,884
1 0,902
1,5 0,903
2 0,950
2,5 0,997
3,5 0,998
4,5 1But

ρ(X + Y ) = 2 > ρ(X ) + ρ(Y ) = 1 + 0, 5
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Exercise

Determine the CVaR and check if the subadditivity axiom is
satisfied.

I CVaR(X) = 2

I CVaR(Y) = 2.5

I CVaR (X+Y) = ?
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Condition Value at Risk: Stochastic formulation

I In order to define the CVaR, we include in our basic model
some additional variables and constraints

I In particular, we define the variables Ls

Ls = max(0,K −W s)

or equivalently
Ls ≥ K −W s

Ls ≥ 0

I To define the objective function we introduce some support
variables y s defined as

y s = max(0, Ls − VaR)

y s ≥ Ls − VaR, y s ≥ 0

Antonio VIOLI DATA SCIENCE 2018/2019



Condition Value at Risk: Stochastic formulation

I Note that VaR is a decision variable here

I The CVaR can be written as

CVaR = VaR +
1

(1− α)

S∑
s=1

psy
s
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The overall model

minCVaR = VaR +
1

(1− α)

S∑
s=1

psy
s

N∑
i=1

Pi0xi = B

N∑
i=1

P̄ixi ≥ θB

Ls ≥ K −W s s = 1, . . . ,S

y s ≥ Ls − VaR s = 1, . . . ,S

Ls ≥ 0 y s ≥ 0 s = 1, . . . ,S

xi ≥ 0 i = 1, . . . ,N VAR ≥ 0
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