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From Lesson 6 . . . The dynamic model

I We consider a planning horizon divided into a number of
elementary periods t = 1, 2, . . .T

I At each period t of the planning horizon, the investor must
decide:

I The amount of security i to be purchased Bit

I The amount of security i to sell Sit
I The amount of security i to be maintained in the portfolio Hit

I The monetary amount to invest in a risk-free asset vt
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The deterministic model

I Physical balance constraints (i = 1, . . .N)

Hit = Hit−1 + Bit − Sit t=2,. . . ,T

Hi1 = InitHoldi + Bi1 − Si1 t=1

HiT = 0 BiT = 0

(SiT = HiT−1)

I Monetary balance constraints

(1− g)
N∑
i=1

PitSit + Ft + (1 + rt)vt−1 =

(1 + g)
N∑
i=1

PitBit + Lt + vt t = 2, . . . ,T − 1

(1− g)
N∑
i=1

Pi1Si1 + F1 = (1 + g)
N∑
i=1

Pi1Bi1 + L1 + v1
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The deterministic model

I The objective function

max WT = (1− g)
N∑
i=1

PiTHiT−1 + (1 + rT )vT−1 + FT − LT
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The scenario tree

Scenario tree for a three-stage problem
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The multi-stage node formulation

I In this case the decision variables are associated with the
nodes of the scenario tree which we use to represent the
dynamic evolution of the uncertain parameters

I Let N denote the set of nodes of the scenario tree
I For each node n ∈ N we denote by

I Pin the price of asset i
I Ln the liability
I Fn the available fund to invest
I rn the risk-free interest rate
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The multi-stage node formulation

For each node n ∈ N we denote by

I Sin the amount of security i to sell

I Bin the amount of security i to be purchased

I Hin the amount of security i to be maintained in the portfolio

I vn the monetary amount invested in a risk-free asset
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The multi-stage node formulation

I Physical balance constraints (∀i)
Hin = Hia(n) + Bin − Sin ∀n ∈ N − {0}
Hi0 = InitHoldi + Bi0 − Si0

Hin = 0 Bin = 0 ∀n ∈ {leaf node}
Sin = Hia(n) ∀n ∈ {leaf node}

I Monetary balance constraints

(1− g)
N∑
i=1

Pi0Si0 + F0 = (1 + g)
N∑
i=1

Pi0Bi0 + L0 + v0

(1− g)
N∑
i=1

PinSin + Fn + (1 + rn)va(n) =

(1 + g)
N∑
i=1

PinBin + Ln + vn n ∈ N − {0} − {leaf node}
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The multi-stage node formulation

I Definition of the wealth at the leaf nodes

Wn = (1− g)
N∑
i=1

PinHia(n) + (1 + rn)va(n) + Fn − Ln ∀n leaf node

I The objective function

max z =
∑

n ∈{leaf nodes}

pn ∗Wn
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The multi-stage split formulation

In this case the decision variables have a double index (stage,
scenario)
We denote by

I Ps
it the price of asset i at stage t under scenario s

I Lst the liability at stage t under scenario s

I F s
t the available fund to invest at stage t under scenario s

I r st the risk-free interest rate at stage t under scenario s
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The multi-stage split formulation

For t ands we denote by

I S s
it the amount of security i to sell at stage t under scenario s

I Bs
it the amount of security i to be purchased at stage t under

scenario s

I Hs
it the amount of security i to be maintained in the portfolio

at stage t under scenario s

I v st the monetary amount invested in a risk-free asset at stage
t under scenario s
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The multi-stage split formulation

I Physical balance constraints (∀i)
Hs
it = Hs

it−1 + Bs
it − S s

it t = 2, . . .T − 1 ∀s
Hs
i1 = InitHoldi + Bs

i1 − S s
i1 s = 1, . . .S

Bs
iT = 0 Hs

iT = 0

S s
iT = Hs

1T−1 i ∀s
I Monetary balance constraints

(1− g)
N∑
i=1

Ps
i1S

s
i1 + F s

1 = (1 + g)
N∑
i=1

Ps
i1B

s
i1 + Ls1 + v s1 ∀s

(1− g)
N∑
i=1

Ps
itS

s
it + F s

t + (1 + r st )v
s
t−1 =

(1 + g)
N∑
i=1

Ps
itB

s
it + Lst + v st t = 2, . . .T − 1 ∀s
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The multi-stage node formulation

I Definition of the final wealth

W s
T = (1− g)

N∑
i=1

Ps
iTH

s
iT−1 + (1 + r sT )v

s
T−1 + F s

T − LsT ∀s

I The non-anticipativity constraints

Hin = Hs
it(n) ∀n ∈ N s ∈ S(n)

Sin = S s
it(n) ∀n ∈ N s ∈ S(n)

Bin = Bs
it(n) ∀n ∈ N s ∈ S(n)

vn = v st(n) ∀n ∈ N s ∈ S(n)

I The objective function

max z =
S∑

s=1

psW
s
T
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The Ito Process for the stock prices

By applying the Ito’s Lemma, we get the following solution of the
stochastic differential equation

Pt = P0e
(µ−σ

2

2
)t+σdWt

The Wiener process can be rewritten in an approximate form as:

ε
√
t ε ∼ N(0, 1)

Thus

Pt = P0e
(µ−σ

2

2
)t+σε

√
t
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Example

Consider a stock with the following properties:

I volatility = 30% per annum

I drift (or expected return) = 15% per year.

In this case, µ = 0.15 and σ = 0.30.
Let us assume that the initial price P0 = 100 and that we want to
run the simulation on a weekly basis. Thus, Wiener process for the
stock price is:

P = 100e(0.15−
0.32

2
)0.0192+0.3ε

√
0.0192

where 1/52 = 0.0192 is a conversion factor (year → week)
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From the theory to the practice

Recall the structure of a stochastic programming model
The choice of a good scenario generation method is
problem-dependent
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Scenario generation

I Scenario generation represents a critical issue in any
stochastic programming formulation since the quality of the
generated scenarios affects the efficacy of the solutions
provided by the model

I We assume to have available historical data to estimate the
distribution of the uncertain parameters

I Intuitively, the higher the number of generated scenarios the
more faithful the representation of the uncertainty
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Scenario generation

We generally require the scenario set used in a SP to be

I Comprehensive
It should capture all aspects, both extreme and ”normal”
instances of the underlying distribution

I Consistent
It must capture trends and volatility of the underlying
distribution

The first issue is often a question of including ”enough” scenarios,
but we have to pay attention to the extreme events
The second issue is a matter of making sure that expectation,
volatility/correlation of the scenario set is the same of the
underlying process
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Scenario generation

Different techniques have been proposed in the scientific literature
for scenario generation

I Bootstrapping

I MonteCarlo Simulation

I Moment Matching methods
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Bootstrapping

The bootstrapping techniques consists in sampling from historical
data

I It does not need any distributional assumptions.

I It needs historical data.

I Main problem: Are historical data a good description of
the future?
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MonteCarlo Simulation techniques

The Monte Carlo simulation technique consists in drawing from a
given distribution function.
In the case of the stock price, we draw from a normal standard
distribution
In our previous example

P = 100e(0.15−
0.32

2
)0.0192+0.3ε

√
0.0192

If we want to generate two scenarios, we may consider two
drawings from the standard normal distribution.
Thus by replacing the values we get

P1 = 100.6882

P2 = 96.4811
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The two-dimensional case

I Let us now consider two different stocks

I We denote by P1 and P2 the corresponding prices, whose
dynamic behavior is described by

dP1
t = µ1P

1
t dt + σ1P

1
t dW

1
t

dP2
t = µ2P

2
t dt + σ2P

2
t dW

2
t

I We assume that the two processes are correlated and we
denote by ρ12 the correlation coefficient

I We get

P1
t = P1

0e
(µ1−

σ21
2
)t+σ1ε1

√
t

P2
t = P2

0e
(µ2−

σ22
2
)t+σ2ε2

√
t
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The two-dimensional case

I The values of ε1 and ε2 are derived starting from two
independent drawings x1 and x2 from a normal standard
distribution. In particular,

ε1 = x1

ε2 = (ρ12x1 +
√

1− ρ212x2)

I We may distinguish the following cases
I independence (ρ12 = 0)

ε1 = x1 ε2 = x2

I Perfect positive correlation (ρ12 = 1)

ε1 = x1 ε2 = x1

I Perfect negative correlation (ρ12 = −1)

ε1 = x1 ε2 = −x1
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The multidimensional case

In the general case

P j
t = P j

oe
(µj−σ2/2)t+σj

√
t
∑j

k=1 Cjkxk

where

Cij =
1

Cjj
[ρij −

j−1∑
k=1

CjkCik ] i > j

Cjj =

√√√√1−
j−1∑
k=1

C 2
jk

where C are the coefficients of the Cholesky matrix.
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The drift and volatility estimation

I Both the drift and the volatility can be determined by the
historical returns by applying the well known formula

µ =

∑T
t=1 rt
T

σ2 =

∑T
t=1(rt − µ)2

T − 1

I We observe that the values of µ and σ change over the time
and thus ”‘very old”’ data could be not useful to generate
future scenarios
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The simple moving average

To overcome this drawback, it is possible to consider the simple
moving average (MA).
Given a set of historical data, we select a sample window of a given
size, let say M, and we consider the last M observations

µm1 =
1

M

M−1∑
t=0

rT−t
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The simple moving average

As new values become available, the oldest data points must be 

 dropped from the set and new data points must come in to replace 

them.  

Thus, the data set is constantly "moving" to account for new data as it 

becomes available.  

This method of calculation ensures that only the current information 

 is being accounted for. 

Antonio VIOLI DATA SCIENCE 2018/2019



The weighted moving average

I A major drawback of the MA is that it attributes the same
weight to all the considered values, whereas it should be more
meaningful to attribute higher weights to the more recent
observations.

I A weighted average is any average that has multiplying
factors to give different weights to data at different positions
in the sample window.

µm2 =

∑M−1
t=0 αT−trT−t∑M−1

t=0 αT−t
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The weighted moving average

I In the technical analysis of financial data, a weighted moving
average (WMA) has the specific meaning of weights that
decrease in arithmetical progression.
In an M-periods WMA the latest period has weight M, the
second latest M - 1, etc., down to one.

µm2 =

∑M−1
t=0 (M − t)rT−t∑M

t=1 t
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The weighted moving average

1 2 4 4 5 6 7 8 9 10 

15 6 10 15 9 7 11 12 14 11 

11,125 
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