Questo sito utilizza cookie tecnici e di terze parti. Se vuoi saperne di più o negare il consenso consulta l'informativa sulla privacy. Proseguendo la navigazione o cliccando su "Chiudi" acconsenti all'uso dei cookie. Chiudi
vai al contenuto vai al menu principale vai alla sezione Accessibilità vai alla mappa del sito
Login  Docente | Studente | Personale | Italiano  English
 
Home page Home page

MATEMATICA PER L' ECONOMIA

Corso Scienze economiche
Curriculum Economico
Orientamento Orientamento unico
Anno Accademico 2019/2020
Crediti 8
Settore Scientifico Disciplinare SECS-S/06
Anno Primo anno
Unità temporale Primo semestre
Ore aula 48
Attività formativa Attività formative di base

Canale unico

Docente MASSIMILIANO FERRARA
Collaboratori BRUNO ANTONIO PANSERA, ISIDE RITA LAGANA', MARIANGELA GANGEMI, TIZIANA CIANO
Obiettivi Lo studio della Matematica nei Corsi di Studio scientifici assume oggi una importanza fondamentale. La conoscenza delle metodologie quantitative e degli strumenti analitici necessari per la loro realizzazione rappresentano, nella realtà socio-economica attuale, degli elementi indispensabili nel bagaglio culturale di un futuro economista e/o operatore finanziario qualificato. Il Corso di Matematica per l’economia, in linea con questa esigenza, si propone di fornire agli studenti questi strumenti conoscitivi di base, con la finalità di fare acquisire i concetti teorici fondamentali necessari per favorire l'apprendimento e l'assimilazione di una cultura matematica pura, ma soprattutto applicata, propedeutica allo studio di discipline statistiche ed economiche
Programma Algebra matriciale e modelli lineari: Generalità sulle matrici e operazioni con le matrici: somma, prodotto per scalare, trasposizione, prodotto. Complemento algebrico e sviluppo di Laplace per il calcolo del determinante. Proprietà del determinante. Matrici invertibili, condizione necessaria e sufficiente per l'invertibilità, calcolo della matrice inversa; rango di una generica matrice. Sistemi di equazioni lineari: rappresentazione matriciale e vettoriale. Ricerca delle soluzioni: matrice completa e incompleta, teorema di Rouchè-Capelli. Sistemi di Cramer. Sistemi omogenei. Soluzioni di un sistema lineare dipendente da un parametro.

Successioni: Successioni. Successioni monotone. Limite di una successione. Convergenza di una successione. Serie numeriche: cenni

Funzioni reali di una variabile reale. Funzioni e modelli quadratici. Funzioni e modelli esponenziali. Funzioni e modelli logaritmici. Funzioni e modelli trigonometrici.
Insieme di esistenza. Grafico delle funzioni elementari. Funzioni pari e dispari. Estremi ed estremanti, relativi ed assoluti. Funzioni limitate. Funzioni monotone. Composizione di funzioni. Funzioni invertibili. Trasformazioni elementari di grafici di funzioni.
Definizione di limite. Teoremi fondamentali sui limiti. Operazioni sui limiti. Forme indeterminate. Limiti notevoli. Il "numero di Nepero".
Funzioni continue. Teorema dell'esistenza degli zeri. Teorema dei valori intermedi. Teorema di Weierstrass. Invertibilità, monotonia e continuità.
Rapporto incrementale e derivata. Significato geometrico della derivata. Funzioni derivabili.
Teorema sulla continuità delle funzioni derivabili. Derivate delle funzioni elementari. Derivata della somma, del prodotto e del quoziente di due funzioni derivabili. Derivata della composizione di due funzioni derivabili. Derivata dell'inversa di una funzione derivabile.
Teoremi di Rolle, di Lagrange, di Cauchy. Corollari del teorema di Lagrange: test di monotonia, caratterizzazione delle funzioni costanti, teorema del limite della derivata. Teorema di De l'Hospital.
Derivate di ordine superiore. Ricerca dei punti di massimo e minimo assoluti e relativi. Teorema di Fermat (condizione necessaria per l'esistenza di punti di minimo e massimo relativi). Condizioni sufficienti per l'esistenza di punti di minimo e massimo relativi. Concavità, convessità. Punti di flesso. Studio del grafico di una funzione.

Funzioni a due e più variabili reali: cenni introduttivi

Calcolo Integrale: Calcolo integrale: l'integrale di Riemann, il teorema fondamentale del calcolo integrale, primitive delle funzioni elementari, integrazione per parti e per sostituzione, integrale generalizzato.

Equazioni differenziali del primo ordine: introduzione e formalizzazione. Soluzione generale e particolare


Gli Studenti fuori corso e gli Studenti lavoratori potranno svolgere, ai fini del sostenimento dell'esame di profitto, il seguente programma con riferimento esclusivamente ai capitoli 2-3-4-5-7-8, del libro di testo:
L. Peccati, S. Salsa, A. Squellati: "Matematica per l'Economia e l'Azienda", Ed. Egea, Milano, 2018

- Modalità di erogazione della materia: il corso si svolge attraverso lezioni frontali, seminari e/o convegni.
- Valutazione: è previsto un esame scritto e orale per accertare l'avvenuto apprendimento della materia (con eventuale prova di esonero)
Testi docente L. Peccati, S. Salsa, A. Squellati: "Matematica per l'Economia e l'Azienda", Ed. Egea, Milano, 2018
o, in alternativa:
Castagnoli, Marinacci, Vigna: "Principi di Matematica per l'Economia", Ed. EGEA Bocconi, Milano, 2014
Erogazione tradizionale
Erogazione a distanza No
Frequenza obbligatoria No
Valutazione prova scritta
Valutazione prova orale
Valutazione test attitudinale No
Valutazione progetto No
Valutazione tirocinio No
Valutazione in itinere No
Prova pratica No

Ulteriori informazioni

Nessun materiale didattico inserito per questo insegnamento

Elenco dei rievimenti:

Descrizione Avviso
Ricevimenti di: Massimiliano Ferrara
Il Prof.Dr. Massimiliano Ferrara riceve gli Studenti ogni LUNEDI' dalle ore 10.00 alle ore 11.30 e gli Studenti tesisti ogni GIOVEDI' dalle 10.00 alle 12.00 presso il Laboratorio Decisions_LAB, Cittadella Universitaria - TORRE 2, Piano 5 -

E' previsto un ulteriore servizio di tutoraggio a favore degli Studenti, organizzato dalla Cattedra di Matematica per l'Economia, secondo il seguente Calendario:

- Prof. Dr. Bruno Antonio Pansera (Professore a contratto): riceve il VENERDI' dalle 11.00 alle 13.00 presso il Laboratorio Decisions_LAB, Cittadella Universitaria - TORRE 2, Piano 5 -

- Dr.ssa Tiziana Ciano (Dottoranda di Ricerca, email: tiziana.ciano@unirc.it): riceve il GIOVEDI' dalle 9.00 alle 11.00 presso il Laboratorio Decisions_LAB, Cittadella Universitaria - TORRE 2, Piano 5 -

- Dr.ssa Mariangela Gangemi (Dottoranda di Ricerca, email: mariangela.gangemi@unirc.it): riceve il MARTEDI' dalle 10.00 alle 12.00 presso il Laboratorio Decisions_LAB, Cittadella Universitaria - TORRE 2, Piano 5 -

- Dr.ssa Iside Rita Laganà (Dottoranda di Ricerca, email: isiderita.lagana@unirc.it): riceve il MERCOLEDi' dalle 9.00 alle 11.00 presso il Laboratorio Decisions_LAB, Cittadella Universitaria - TORRE 2, Piano 5 -
Nessun avviso pubblicato
Data Ora inizio Ora fine Aula Note
23-10-2019 14:00 16:00 Aula non definita
25-10-2019 09:00 11:00 Aula non definita
28-10-2019 14:00 16:00 Aula non definita

Cerca nel sito

 

Posta Elettronica Certificata

Direzione

Tel +39 0965.1695510

Fax +39 0965.1695343

Indirizzo e-mail


Biblioteca

Tel +39 0965.1695306-7-8

Fax +39 0965.1695345

Indirizzo e-mail

Orientamento

Tel +39 0965.1695364

Fax -

Indirizzo e-mail


Segreteria studenti

Tel +39 0965.655293

Fax +39 0965.654177

Indirizzo e-mail

Didattica

Giurisprudenza - 0965.1695402

Indirizzo e-mail

Economia - 0965.1695402

Indirizzo e-mail Indirizzo e-mail

Scienze Formazione P.- 0965/1695413-415

Indirizzo e-mail


Social

Facebook

Twitter

YouTube

Instagram