Questo sito utilizza cookie tecnici e di terze parti. Se vuoi saperne di più o negare il consenso consulta l'informativa sulla privacy. Proseguendo la navigazione o cliccando su "Chiudi" acconsenti all'uso dei cookie. Chiudi
vai al contenuto vai al menu principale vai alla sezione Accessibilità vai alla mappa del sito
Login  Docente | Studente | Personale | Italiano  English
 
Home page Home page

Data analytics

Corso Ingegneria Informatica e dei sistemi per le Telecomunicazioni
Curriculum Curriculum unico
Orientamento Reti ed applicazioni
Anno Accademico 2018/2019
Crediti 9
Settore Scientifico Disciplinare ING-INF/05
Anno Secondo anno
Unità temporale Primo semestre
Ore aula 72
Attività formativa Attività formative affini ed integrative

Canale unico

Docente PASQUALE DE MEO
Obiettivi Il corso si prefigge di illustrate le tecniche di analisi avanzate dei dati
Programma Introduzione al Data Analytics e al Machine Learning 1. Il concetto di apprendimento supervisionato e non-supervisionato. 2. Il primo esempio di classificatore: k-Nearest neighbor II. Classificazione mediante modelli generativi 1. La distribuzione gaussiana univariata e multivariata 2. Approcci generativi per la classificazione III. Modelli di predizione lineare I 1. Regressione Lineare 2. Regularized Linear Regression: Ridge Regression 3. Regularized Linear Regression: Lasso Regression 4. Logistic Regression IV Modelli di Predizione Lineare II 1. Perceptron Algorithm 2. Elementi di ottimizzazione vincolata e non vincolata 3. Ottimizzazione di funzioni convesse e la teoria della dualità 4. Support Vector Machines: hard-Margin SVM 5. Support Vector Machines: Soft-Margin SVM 6. Estensione alla multiclass classification. V. Altri metodi di classificazione 1. Kernel methods e Kernel Trick 2. Kernel Perceptron 3. Kernel SVM 4. Classification and Regression Trees 5. Combinazione di weak classifiers: il Boosting 6. Random forests V. Metodi di Apprendimento non supervisionato 1. Clustering 2. Metodi di riduzione della dimensionalità: PCA e SVD VI. Introduzione al Deep learning 1. Autoencoders 2. Rappresentazioni distribuite 3. Feedforward neural nets
Testi docente Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The elements of statistical learning (2nd edition). Kevin Murphy, Machine learning: a probabilistic perspective
Erogazione tradizionale
Erogazione a distanza No
Frequenza obbligatoria No
Valutazione prova scritta No
Valutazione prova orale
Valutazione test attitudinale No
Valutazione progetto No
Valutazione tirocinio No
Valutazione in itinere No
Prova pratica No

Ulteriori informazioni

Nessun materiale didattico inserito per questo insegnamento

Elenco dei rievimenti:

Descrizione Avviso
Ricevimenti di: Pasquale De Meo
Per appuntamento via mail (pdemeo@unime.it).
Nessun avviso pubblicato
Nessuna lezione pubblicata

Cerca nel sito

 

Posta Elettronica Certificata

Direzione

Tel +39 0965.1695510

Fax +39 0965.1695343

Indirizzo e-mail


Biblioteca

Tel +39 0965.1695306-7-8

Fax +39 0965.1695345

Indirizzo e-mail

Orientamento

Tel +39 0965.1695364

Fax -

Indirizzo e-mail


Segreteria studenti

Tel +39 0965.655293

Fax +39 0965.654177

Indirizzo e-mail

Didattica

Giurisprudenza - 0965.1695402

Indirizzo e-mail

Economia - 0965.1695402

Indirizzo e-mail Indirizzo e-mail

Scienze Formazione P.- 0965/1695413-415

Indirizzo e-mail


Social

Facebook

Twitter

YouTube

Instagram